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AERODYNAMIC COEFFICIENTS
Tor

LITTLE JOE II - APOLLO
BASED ON VIND TUNKEL TESTS

SUMMARY
/ o N/é
An analysis of Little Joe II/Apollo wind tunnel data is presented and com-
pared to predicted information. Also, the wind tunnel data have been extrapo-
lated theoretically vwhere necessary to provide a complete set of asrodynamic

coefficients to be used in trajectory calculations. In general, the data cop-
tained in this report agree very well vith predictions. (7 ‘M/ PSPPI /e

INTRODUCTION

During the months of September through November of 1962, wind tunnel tests
vere conducted on a 0.03 scale model of the Little Joe II/Apollo configuration
shown in Figure 1. These tests were run in facilities of the KASA Research
Center at langley Field, Virginia. The tests covered a range of Mach numbers
from M¥ 0 to M = 4.65. A data report (Reference 1) presents this wind tunnel
data wvithout analysis.

The analysis of the data in Reference 1 is presented herein. Axial drag

has been analyzed to show the effects of Mach number, angle of attack, control
surface deflection, skin friction, and base pressure (power on and power off).
Rigid stability derivatives are presented for the complete configuration, body
alone and fins alone. Effects of fin elasticity are also discussed. Theoretical
extrapolations have been made wvhere the wind tunnel data did not cover conditions
of interest so that a complete set of aerodynamic coefficients is contained in
this report.
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8YMBOLS

c Axial - force ocoefficient, axial force

A q_ab

C, 8kin friction coefficient, sk:n friction

v

C, Hinge - moment coefficient, 919-?;#3
L o

C, Rolling - moment occefficient, r%lﬂmt

C\ Pitching - moment coefficient, gi_t_%?_-_u_-_nt

(REE) about a given reference 1

C Normal - force coefficient, normal force
g,
Pb -P

c Base pressure ocoefficient,

P Q

)

D Maximum booster diameter, 12.83 ft.

| Free streanm Mach Number

Pb Base Pressurse

Po Free stream ambient pressure

8‘ Booster base area, 129.3 sq ft.

Sc Fin area aft of hinge line

8' Swrface area exposed to airstream

v Free stream velocity, ft/sec.

xe Center of gravity location along X axis

w &
c.8- Centar of gravity

v B P-FR ocmEyY 2706510

|
|
\
|
1
)
|
|
1
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Mesan Aerodynamic Chord of Fin aft of Hinge Line
Maxisum Booster Diameter, 12.83 ft.

Free-stream Dynamic Pressure (1/2 pvz) , 1b/aq ft.

Pitch Damping boetﬁcient

a4 C
Pitching Moment Curve Slope ( = )

Sy
Pitching Moment Curve Slope o

d CN
Normal Force Curve Slope To

d CN
Normal Force Curve Slope 3is

d ch
Hinge Moment Curve Slope T a

acC
Hinge Moment Curve Slope h

L)

d C‘
Rolling Moment Curve Slope <Ta

4 C‘
Rolling Noment Curve Slope B

d c‘
Rolling Moment Curve Slope 5
Sideslip angle, ~ degrees
Angle of attack, degrees
Control surface deflection, degrees
Density of air, ’—l-%——

ft
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DISCU3sion

AXIAL DRAG ANALYSIS

The drag analysis is considered in three major parts for the full Mach num-
ber rsnge from M = 0 to M = 5.0. These parts are:

1) A detailed breakdown of drag contributions for zero angle of attack
and zero control deflection.

2) The incremental drag effect due to angle of attack.
3) The incremental drag effect due to control surface deflection.

In addition, the drag due to reaction control fairings is discussed for a
range of Mach numbers from M « 0.3 to M = 1.2. Comparisons are made of the
drag due to control surface deflection in pitch and roll and the drag for the
vehicle in the primary and secondary pitch plane. A comparison of the full
scale vehicle and vind tunnel model is also made. Full scale dimensional data
are presented in Table I.

Drag for Zero Angle of Attack and Zero Control Deflection

The full scale drag was developed basically from the wind tunnel data.
That is, the wind tunnel data was separated intc 1iis component paris, scale
effects removed, and full scale corrections made. The component drag of the
Little Joe II wind tunnel model is presented in Figure 2, the increments being
forebody drag, base drag, and skin friction for both the tower-body combination
and the fins.

Wind tunnel data for the tower-body alone (no fins) were obtained up to and
including Mach 1.2 only. Thus, the total fin drag contribution was obtained by
incrementing the total configuration and tower-body alone drag data up to Mach
1.2 and by theoretical calculations for the remaining Mach range. Fin wvave drag
vas determined by supersonic swept wedge theory. The fin tase pressure vas ex-
timated on a two dimensional basis (Reference 2) and compared to the experimental
base pressure of the body, since both are located in the same region. The values
wvere found to be essentially the same.

The skin friction was calculated in the classical manner based upon the
turbulent skin friction coefficient for zero heat transfer (Reference 3), wind
tunnel Reynolds Number per foot, reference lengths of tower-body length and

fin mean aerodynamic chord length, along with the associated wetted areas to
obtain the wind tunnel drag less skin friction.

SN
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The full scale drag build up was then conducted starting with the wind
tunnel forebody less skin friction drag (Figure 3). To obtain the full scale
skin friction, the full scale Reynolds number versus Mach number was determined
from the mission E and F profiles® (Figure 4), then the associated turbulent
zeroc heat transfer skin friction coefficients (Reference 3),and finally drag
coefficients were determined based upon the proper wetted areas (vetted area
ratios and skin friction coefficients are given in Table II). The full scale
drag build up vas continued by including full scale power-off base drag. This
drag was indicated to be equal to the wind tunnel bese drag (Reference 2) since
the model sting support area to model bese area ratio is 0.2. The power-on
base drag increment was represented by a range (upper and lower limit plus a
mean value) vhich was recommended by the NASA, Reference 4. Thus, the full
scale drag build up is complete for the basic washer off configuration. For
reference, a comparison of full scale forebody drag of the vasher-off, washer-on,
and predicted values is presented in Figure 5.

Drag Increment Due to Angle of Attack

The effect of angle of attack on axial drag was determined by incrementing
wind tunnel data directly, Pigure 6. The drag increment of the forebody and
the base have been presented separately, since the base drag increment is a
pover-off effect and would be excessive if added along with the power-on effect.
In the practical range of cperation, considering missions E and F (¥5°) the
base pressure increment can be considered negligible.

Drag Increment Dus to Control Surface Deflection

The effect of control surface deflection on axial drag was also determined
by incrementing wind tunnel data, Figures 7 - 1lh. Again, the increment of the
forebody and base are presented separately since the base increment would be
excessive for the power-on case. The base pressure increment has only been
presented for the zero angle of attack case but is indicative of trends and
order of magnitude for the other angles of attack, Figure 8. The remaining
values can be obtained directly from Reference 1 if desired. For the practical
range of operation for missions E and F (+6° ) vhere drag is significant, it is
satisfactory to use the forebody drag as presented and neglect the small effect
on pover-on base drag.

Drag Due to Reaction Coatrol Fairings

The reaction control fairings were removed from the model in the Mach range
0.3 through 1.2. The axial drag increment was indicated to be approximately

*Migsion E is & high altitude abort and Mission F is a high q abort.
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0.0065 with the drag rise starting at Mach 0.9 and attaining a maximum increment
of 0.0090 at Mach 1.2. Since these valuss are small the axial drag coefficient
with the reaction control fairings on may be used for the uncontrolled (fixed
fin) vehicle.

Drag Comparison of Control Surface Deflection in Pitch and Roll

A limited drag comparison was made of control surface deflections for pitch
and roll, Table III. The comparison was made for forebody and body base at
angles of attack of zero and fourteen, control surface deflections of five and ten
degrees, and all Mach numbers tested. The coxmparison was made by incrementing
the drag for the same surface deflection of a pure roll deflection with that of
a pure pitch deflection. For the practical range of control surface deflection
where drag 18 significant for missions E and F, namely, +5° angle of attack and
$6° control surface deflection, the drag increment can be considered negligible.

Drag Comparison for Primary and Secondary Pitch Plane

A drag comparison was made for orientation in both the primary and secondary
pitch planes from Mach 0.3 through 1.2 ard an angle of attack range of -11 to 41k
for zero control surface deflection. After adjusting the data to agree at zero
angle of attack, the drag agreed within ¥.0100 for the same angle of attack.

This wvas considered to be insiguificant.

Comparison of Full Scale Vehicle and Wind Tunnel Model

The essential difference between the wind tunnel model and the full scale
vehicle is the mating and end plated regions of the corrugated skin section.
At stations 227 and 326, ring flanges vhich are perpendicular to the vehicle
axis of symmetry and block the trough of each corrugation were not represented
on the model. Also at statiom O and 227, the base region of the corrugation
trough of the full scale vehicle ia a venting region. The venting permits relief
of interual pressure of lower altitude corditions and was not represented on the
model. A theoretical calculation to estimate the increased full scale drag at
Mach 2 of these variations indicated the value to be spproximately .0200 axial
drag coefficient. Since this value was small, no correction wvas included.

At a later date strakes vere added to the Apollo Command Module but it is
felt that their effect on total vehicle drag will be negligible.

COTF O EN it

DATE 2h June 1963
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RIGID STABILITY COEFFICIERTS

The analysis of the rigid stability coefficients has been broken down into
three areas. These are (1) complete configuration, which includes the entire
Little Joe II/Apollo configuration, (2) body alone, which has the fins and
reaction control fairings removed, and (3) fins alone.

Complete Configuration

Low speed (Mach near zero) values of normal force and center of pressure
location are shown in Figure 15 as a function of angle of attack at rero fin
deflection for values of angle of attack up to 95°. These data are useful in
determining reaction control requirements during lift-off.

The normal force slope and pitching moment slope are shown in Pigures 16
and 17, respectively. These data have been obtained directly from Reference 1.
Since the wind tunnel data are not linear throughout the angle of attack range,
cN and C, have been presented for that rangs of angles of attack when the data

a

%

is linear and for an overall average slope.

The center of pressure location measured from the base is shown in Figure 16.
It has been computed by using the relation

(), . % s

where cMcx i8 about the moment center at 2.272 diameters from the base. The

range of angles of attack for which the data are linear i3 showsn in Figure 18.
Beyond this linear region the average slope should be used, but for approximate
values only. If more accurate results are desired in the high angle of attack
region the actual data in Reference 1 should be referred to. The predicted
values of Cy , C, aud xc.g.) from Reference 5 are shown on the figures

a a

% D

and shows the data agree well with predictious.

The normal force slope, pitching moment slope and center of pressure position
due to control deflection are shown in Figures 19 and 20. These data were
determined from cross ploits of the pitch data at various control deflections.

The rolling mowment due to control deflection, C‘ ,» is shown in Flgure 21.
C, is zero for all Mach numbers. Since the eontigugation is basically *

sy%mtric Cz is alsc zero for the entire Mach number range.
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The pitch damping coefficient C, is presented in Figures 22, 23 and 2k

for respective center of gravity posItions of 1.0, 1.5 and 2.0 diameters from
the base, and are compared witn predicted curves from Reference 5. Figure 25
shows center of gravity positions of 1.0, 1.5, 2.0, 2.5 and 3.0 dismeters

from the base, wvhich covers the c.g. travel for all missions of Little Joe II.
The following equation from Appendix G of Reference 6 was used to compute CM .

q
cnq - :'15'2 'CuaBom (%);m +CN“FIN(%>§IN

vhere C., 48 in units of per radian and X is the moment arm of the applicable

Hq
force.
X
A comparison of C , —352— q 24 C”u between the primary and secondary
a

configuration is shown in Figures 26 and 27. The comparison shows that rotating
the vehicle to the secondary configuration increases the static stability

slightly. :

The configuration for the uncontrolled flights (bigh q abort) differs from
the controlled Little Joe II configuration in that it doesn't have the reaction
control fairings. Figure 28 shovs that the effect of reaction control fairings

is very minor.
Hinge moment characteristics and Ch are shown in Figure 29 and are

compared vith the predictions of Relerence 9 is shown for two angle of

attack ranges rather than an average value, since there is a change in slope
at an angle of attack of approximately +6° and the values of C, within the

range shown are generally linear. In addition, since the wind ?unnel tests
were run only up to a Mach number of 1.2 the curves of and (a=0® - %)

have been extrapolated to coincide with the predicted valie. A literature
research (References 7 through 12) showed that the predicted values are a good
indication of the supersonic hinge moment characteristics.

Alone

X
Thebodydnmvalm-ofc,,,—%ﬂ and are shown in Figures 30 and 31.

Subsonic and transonic values up to M = 1.2 have Been obtained directly from
analysis of wind tunnel data. Values from M = 1.2 to M = 5.0 have been extrapo-
lated based on the predicted values from Reference 5, and adjusted as necessary
to make the tail alone data reasonsble.
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Tail Alone

Since the tail alous was not tested in the wind tunnel, it has been necessary
to calculate the fin normal force slope and center of pressure location from the

data for the coamplete configuration and body alone configuration. The basic
relations that were used are sa follow:

X
The first attempt at computing (—cf-) resulted in a center of pressure
FIN

location ahead of the fin leading edge. This was an unreasonable velue because
the subsonic center of pressure location should be approximately at .25 T and
at about .50 ¥ supersonically. Investigation revealed that tLe numbers in-
volved vere very sensitive and by making small changes in the values of

X

: and large changes in (—-52-" ) could be realized. The

( 4m) (c“a )m FIN

body only data was then adjusted so that --"-P—) vas at a reasonable location.

The body only coefficients were then rechecksd vi tuzmel data and
found to be still valid. Figure 32 presents the c.z.

FIR
for the tail only.

Configuration Chaoges

After the wind tunnel tests had been completed two changes vere made to the
Little Joe II/Apollo configwration:

1. Strakes were added to the Apollo space craft.

2. The fins on Little Joe II were moved 5-1/2 inches forward. !

FLRM 5228 1REY (2780}
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Both of these changes are destabilizing and their effect on center of
pressure location was checked. The combined effect of botia changes would
result in .046 diameter forward shift of the missile center of pressure location.
It wvas felt that this was still within the accuracy of the data so no adjust-
ments were made to the analysis curves.

AEROELASTIC FFFECTS ON STABILITY

Asroelastic effects on the fixed fin vere inveatigated for high ¢ abort mission
at the maximum dynamic pressure condition of 600 psf and Mach 0.9 with a fin area

of 50 ft<,

The lift curve slope for the inelastic case was determined from the wind
tunnel data. The spanwise airload distribution was calculated by the method
of Reference 13. These loads were then used in the structursl elastic matrix
to determine the twist and deflections of the elastic fin. The ratio of CN
eluticlcu inelastic of the fina ves determined to be 1.05. This o

relativelyasmll increase due to aeroelssticity Justifies the use of rigid-body
coefficients.

The aercelastic effect of the controlled fin will be investigated at a
later date.
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TABLE I
FULL SCALE DIMERSIONAL DATA
BobY
Base Area, square feet 129.3
Neaximum Dismeter, feet 12.83
Total Length (including escape tower), feet 79.2
FIN
Total Area per fin, square feet 50.0
Msan Asrodynamic Chord, feet 6.58
CONTROL SURPACE (One)
Ares, square feet 15.0
Mean Aerodynamic Chord, feet 3.19
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TABLE 11
WETTED AREA RATIO8
5,/8,
Escaps Tower 1.81
Apollo Command Module 1.88
Service Module and Adspter h.lh | 19.2
Little Joe 1I Body n.77
Pios 3.57
8KIN FRICTION COEFFICIENTS
q Er E; Ef
(BODY) (poDY) (FIN8) (Fins)
M Wind Tunnel Pull Scale Wind Tunnel Full Scale
.3 .0033 .00190 .0053 .0027%
s 5 .0030 .00175 .00k8 .00250
T .0028 .00165 m .002k0
.8 .0029 .00160 . .00R30
.9 0027 .00155 0043 .00225
.95 .0027 .00155 .00k3 .0022
1.0 0028 .00155 00kk .0022
1.2 0027 .00150 .0043 00215
1.57 .0027 .00140 0046 .00205
1.8 0027 .00140 0045 .00200
2.16 0025 00045 L0042 .00210
2.8 .0023 .00150 .00k .00225
! 3.86 .0020 .001T0 .0036 .00290
4.65 0018 .00210 .0033 .00350
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TABLE I1I11
DRAG INCREMENT COMPARIMG CONTROL SURFACE DEFLECTION
FOR PITCH AND ROIL
ac, = [¢C -C ) c, = ¢C
A ( AgoLs ‘pmm) " “r  rompovt
c s C
Avease
5 ms* 5 = 10
a=0 a = 18 as ae
foo AC o0 fa's} fu's &0 &0

I O I T O O O

.3 .00k0 0090 0100 .0120 {-.0400 { .0090 .0190 .00T0

5 00k0 0 0150 L0100 .00h0 | .0030 .0510 0020

.7 L0025 .0015% 0220 .0070{ 0170 { .0020 L0740 .0090

.8 { -.0050 «.00}0 .0330 .0100 | .0360] .0020 | .0780 .0190
) v9 .m om .0320 001” -0150 "om .0&0 .&m
l.o .0@0 -.Om .0310 .0260 ’-m -m cm -
1.2 .0010 .0080 .0300 .0030.] .01k5} .0050 .0590 .0030
1‘51 om 0 om -.w50 - - - -
1.8 .0050 0 058 | -.0020] - - - .
2.14 .0005 0 0200 0015} - - - -
2.8] .0015 .0030 0150 0020 - - - -
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ADBDDERDUN A

EXHAUST JET PLUME EFFECTS

INTRODUCTION

This addendum presents the results of a stuly to determine vhether or not
Little Joe 11 stability and oontrol charscteristics are adversely affected at
high altitudes where billowing of the rocket exhaust Jets might induce flow
separation over tha afterbody and fins.

A preliminary study of this problea was mads during the early design stage
of the wvehicle and the results are reported in Reference 1. The present study
is a follov-on to the origimal work. It vas considered necessary to continue the
analysis for the following reasons:

(a) Misasion profilas and firing orders are nov different from those
evaluated in the original study.

(v) At the tims of the original study it vas assumed that the nozsle
exits wvere in the plane of the vehicle's base, since detail design
of this ares had not yet been completed.

(e) The original analysis of size and shape of the jet plume was based
on the methods given in Reference 2. It was necessary to extrapolate
to mach higher noszle exit to ambient pressure ratios than those oon-
sidered in Reference 2 wvhen these techniques were applied to the
Little Joe II configuration. JMore recent work, presented in Reference
3, enables ithe pilums shape to be calculated for the actual nostle
pressure ratios encountered during the Little Joe II missicn profile.

ROCKET AND MISSION CHARACTERISTICS

For this stuldy, the following noszle and Algol rockst characteristics were

chamber pressure, Pc « k29 psia

exit presswre, P = 16.15 psia

e
exhaust gas specific heat r&tio,

7
J

exit Mach number, “3 - 2.68

= 1017

P Ry
s -

nozzle exit angle, & « 17°

FroRw (8:2-28 {(REV j2/811
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At this time, misasion (e) profile (high altitude abort) produces the
highsst altitudes and, consequantly, largest jet plumes. As ves pointed out
in Reference 1, large jet plumes cause the bdoundary layer to separate because
it cannot vithstend the adverse pressure gradients associated with the large
turning angle near the plumes.

Representative flight conditions chosen for analysis from the mission (e)
flight profile are as follows:

Time From r/p
_Lawnch X -y %
(Seconds) (1000 ft)
50 2.16 55 12.1
60 2.8 79 38.2
T0 3.65 bR N1 163.1
& .67 155 897
8.5 5.02 189 3230

DISCUSSION

Using the methods given in Reference 3, Jjet plume shapes for the above
flight conditions were calculated. The results are shown on Figure 1, in which
the radius of the jet plume is plotted versus axial distance (in no
for both a quiescent atmosphere and the free stream Mach numbers listed in the
above table. Twrning angles of the free stream aft of the base were obtained
from Reference &; these angles established the points at which the free streax
intersected the jet plume boundaries.

After the Jet plume shapes have been established, it is necessary ic dster-
mine the maximm pressure rise that can be tolerated before separation occurs.
References &, 5, and 6 contain sxperimental data vhich vere used as a basis to
establish the critiecal pressure coefficient for separation. The maximm allow-
able turning angles corresponding to the critical presswre coefficients were
determined feor each flight condition. The eritical angles ware exceeded at each
of the flight conditions, indicating that separated regions exist. With flow

, deflection angle and shock angle determined by the eritical pressure coefficient,
. the position of initial separation vas determined using the experimental data
and 7 as a guidse. It wvas found that the initial separation
the base for flight conditions at 2.16, 2.84 and 3.65 Mach
and 5.20 there are s ted regions on the afterbody,

ut the fins are not affected (see Figure 2).
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-
x
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x
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CORCLUBIONS

From the foregoing discussion it is concluded that jet billowing of
the underexpanded nozsles will not cause any stability and control problems
on Little Joe I1I.

FURM B2 28 (REY 2/81]
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